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Executive Summary 

Over the past two decades, the cognitive development of children across much of the 
developed world has stalled and, in many domains, reversed.  Literacy, numeracy, 
attention, and higher-order reasoning have declined despite increased school attendance 
and expanded public investment. 

One major structural change distinguishes today’s classrooms from those of prior 
generations: the rapid and largely unregulated expansion of educational technology 
(EdTech).  Digital devices now occupy a significant share of instructional time, assessment, 
homework, and student attention. 

The available evidence (from international assessments, large-scale academic studies, and 
meta-analyses) shows that increased classroom screen exposure is generally associated 
with weaker learning outcomes, not stronger ones.  In narrow circumstances (e.g., tightly 
constrained adaptive practice and remediation), digital tools can support surface-level skill 
acquisition, but in most core academic contexts screens slow learning, reduce depth of 
understanding, and weaken retention. 

This is not primarily a question of teacher quality, student motivation, or access to devices.  
It reflects a structural mismatch between how human cognition develops and how digital 
platforms are engineered to capture attention, fragment focus, and accelerate task 
switching. 

If federal policy continues to incentivize large-scale digital adoption without demanding 
independent efficacy evidence, privacy protections, and developmental safeguards, it risks 
compounding long-term educational and workforce harm. 

 

1. What Has Changed 

For most of the twentieth century, cognitive performance steadily improved across 
generations, driven largely by expanding access to formal education and improved 
instructional quality1.  Beginning in the mid-2000s, this trend plateaued then reversed in 
many Western nations.  Multiple indicators now show stagnation or decline in literacy, 
numeracy, problem solving, creativity, and general cognitive performance among 
adolescents2-6. 



At the same time, classroom environments underwent a rapid digital transformation. 
One-to-one device programs, cloud platforms, online assessments, adaptive software, and 
constant connectivity became standard practice in many districts - often without 
independent longitudinal validation. 

Over half of our children now use a computer at school for one to four hours each day, and 
a full quarter spend more than four hours on screens during a typical seven-hour school 
day7.  Unfortunately, studies suggest that less than half of this time is spent actually 
learning, with students off-task for up to 38 minutes of every hour when on classroom 
devices8. 

 

2. Evidence from International Assessments 

PISA 

The Programme for International Student Assessment (PISA) tracks the academic 
performance of 15-year-olds across dozens of countries. When students self-report 
classroom computer use, higher daily screen exposure consistently corresponds to lower 
scores in reading, mathematics, and science. The relationship is monotonic: more screen 
time, lower performance. 

 

Apparent small advantages sometimes reported for minimal computer exposure disappear 
once test mode effects are accounted for.  When assessments shifted from paper to digital 
delivery, students with limited device familiarity experienced artificial score penalties, 
creating the illusion of benefit for moderate screen users rather than genuine learning 
gains9. 

 

TIMSS 

The Trends in International Mathematics and Science Study (TIMSS) shows a similar 
pattern among younger students. Frequent in-class computer use correlates with 



significantly lower math and science performance across both high-income and 
middle-income countries. 

 

PIRLS 

The Progress in International Reading Literacy Study (PIRLS) historically shows weaker 
reading performance among students with high classroom computer use. More recent U.S. 
data confirm that even modest daily digital exposure is associated with lower reading 
comprehension10. 

 

Collectively, these assessments involve millions of students over decades and converge on 
the same conclusion: heavy classroom screen exposure is not improving learning outcomes 
at scale. 

 

3. Evidence from Meta-Analysis 



Meta-analyses aggregate hundreds of individual studies to estimate overall impact. Most 
EdTech meta-analyses report small positive effect sizes. However, education research 
systematically inflates positive effects because comparison conditions vary widely and 
often lack rigorous baselines. 

When educational interventions are benchmarked against established instructional 
methods, meaningful impact typically begins around moderate effect thresholds 
(approximately 0.40 – 0.50)11.  Most digital interventions fall below this range, particularly 
in: 

• One-to-one device programs 

• Fully online instruction 

• General classroom technology integration 

• Programs targeting disadvantaged populations 

Only narrowly constrained tools (such as adaptive drills for foundational skills and targeted 
remediation) consistently approach meaningful gains. These tools succeed because they 
automate repetition in well-defined domains, not because they enhance deep learning. 

To assess practical significance, effect sizes must be interpreted relative to a meaningful 
benchmark rather than an arbitrary zero. Large-scale syntheses of education research 
indicate that the average impact of ordinary classroom instruction is approximately +0.4211. 
An intervention that falls below this threshold does not meaningfully outperform standard 
practice, even if its effect size is technically positive. In practical terms, schools should not 
invest in tools that perform worse than the average classroom already does without them. 

For clarity, the table below presents effect sizes re-centered against this instructional 
benchmark to show whether each category of educational technology exceeds or 
underperforms typical instructional impact11, 12. 

 

 # Of Meta-
Analyses 

# of Research 
Studies 

Effect Size 
(Cohen’s D) 

General Learning 398 21,155 -0.13 (SE=0.09) 

SPECIFIC MODERATORS 
Online/Distance Learning  42 1,767 -0.22 (SE=0.06) 
Primary Years 27 781 -0.03 (SE=0.04) 
Secondary Years 10 745 -0.11 (SE=0.05) 
Intelligent Tutoring Systems 5 283 +0.10 (SE=0.03) 
1-to-1 Laptops 3 162 -0.30 (SE=0.07) 
Disadvantaged Students 4 195 -0.26 (SE=0.02) 



Literacy 31 1,109 -0.09 (SE=0.15) 
Mathematics 41 3,479 -0.09 (SE=0.13) 
Science 10 547 -0.18 (SE=0.19) 
Learning Disorders 9 245 +0.05 (SE=0.08) 
NOTE: Reported effect sizes from published meta-analyses have been re-centered relative to the estimated 
average impact of typical classroom instruction (+0.42). Values shown represent the difference between each 
intervention’s effect and this instructional benchmark (Adjusted Effect = Reported d – 0.42). This does not 
alter the underlying study results; it clarifies whether an intervention meaningfully exceeds, matches, or 
underperforms ordinary instructional impact. 

 

Interpreted this way, most general-use educational technologies perform below the 
effectiveness of ordinary classroom instruction, while only narrowly constrained adaptive 
tools modestly exceed baseline impact. 

 

4. Mode Effects: Reading and Writing 

Independent research consistently shows that reading comprehension and retention are 
stronger on paper than on screens, particularly for complex or extended texts.  Spatial 
stability, reduced scrolling, and embodied interaction support memory formation and 
comprehension12. 

 # Of Meta-
Analyses 

# of Research 
Studies 

Effect Size 
(Cohen’s D) 

Reading Comprehension 10 377 -0.16 (SE=0.05) 

SPECIFIC MODERATORS 
Adult Supports 1 7 -0.22 (SE=0.22) 
Adult vs Digital Supports 1 10 -0.22 (SE=0.07) 
NOTE: All studies compare screens to hard-copy texts, meaning the baseline of ‘reading from paper’ is 0.00. 

 

Similarly, handwritten note-taking reliably outperforms laptop note-taking for long-term 
learning.  Typing encourages verbatim transcription and shallow processing; handwriting 
forces summarization, organization, and conceptual encoding12. 

 # Of Meta-
Analyses 

# of Research 
Studies 

Effect Size 
(Cohen’s D) 

General Learning 4 238 -0.21 (SE=0.04) 

SPECIFIC MODERATORS 
Allowed to Review Notes 1 9 -0.42 (SE=0.07) 
Class Length: >30min 1 5 -0.58 (SE=0.01) 
NOTE: All studies compare typing  to handwriting, meaning the baseline of ‘handwritten notes’’ is 0.00. 

 



These effects are not marginal curiosities.  They directly affect how students process 
information across subjects and grade levels. 

 

5. Why Screens Undermine Learning: A Core Mechanism 

Human attention systems evolved to sustain focus on a single task at a time. The prefrontal 
control system cannot reliably manage competing goal states without significant 
performance costs13.  When attention is repeatedly interrupted, three predictable costs 
emerge: 

1. Time loss from task switching overhead14. 

2. Higher error rates from cognitive interference15. 

3. Weaker memory formation as learning shifts from deep encoding toward 
habit-based processing16. 

Digital platforms are optimized for rapid switching, novelty, and continuous engagement 
capture.  Even when used for academic tasks, they cue the same behavioral patterns 
students practice during recreational screen use: frequent checking, rapid scrolling, and 
multitasking. 

As a result, screens structurally train attentional habits that conflict with sustained learning. 
This is not a matter of discipline or willpower; it is a function of repeated conditioning. 

 

6. National Implications 

Sustained declines in cognitive skill development have downstream consequences for: 

• Workforce adaptability and productivity 

• Scientific and technological innovation 

• Civic reasoning and institutional trust 

• Economic competitiveness17 

• Public health and wellbeing18 

Education policy shapes long-term human capital. Decisions made today will influence 
national capacity for decades. 

 

7. Policy Recommendations 



Congress has several practical levers to improve accountability and protect students: 

1. Independent Efficacy Standards: Require federally funded EdTech to demonstrate 
learning benefits through independent, replicated trials before large-scale 
deployment or renewal. 

2. Mode-Equivalence Validation: Mandate validation studies before transitioning 
high-stakes assessments from paper to digital formats. 

3. Student Data Protections: Strengthen limits on behavioral tracking, profiling, and 
secondary data use involving minors. 

4. Procurement Transparency: Require public disclosure of evidence standards, 
conflicts of interest, and performance claims in district purchasing. 

5. Developmental Screen Exposure Guidelines: Establish age-appropriate limits for 
screen exposure in federally supported early education programs. 

6. Federal Evidence Clearinghouse: Create a centralized repository of independently 
replicated EdTech research to guide districts. 

7. Research Funding for Longitudinal Outcomes: Prioritize long-term cognitive and 
academic impact studies rather than short-term engagement metrics. 

 

Conclusion 

This is not a debate about rejecting technology. It is a question of aligning educational tools 
with how human learning actually works. Evidence indicates that indiscriminate digital 
expansion has weakened learning environments rather than strengthened them12. 

Federal policy can restore balance by demanding evidence, protecting children’s 
developmental needs, and ensuring that innovation serves learning rather than attention 
capture. 

Our responsibility is not to maximize screen exposure, but to maximize the cognitive 
capacity and long-term flourishing of the next generation. 
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